skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palma, Pilar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A family of stable and otherwise selectively unachievable 2,6-bisimino-4- R -1,4-dihydropyridinate aluminium (III) dialkyl complexes [AlR' 2 (4-R- i PrBIPH)] (R = Bn, Allyl; R′ = Me, Et, i Bu) have been synthesized, taking advantage of a method for the preparation of the corresponding 4- R -1,4-dihydropiridine precursors developed in our group. All the dihydropyrdinate(−1) dialkyl aluminium complexes have been fully characterized by 1 H- 13 C-NMR, elemental analysis and in the case 2′a , also by X-ray diffraction studies. Upon heating in toluene solution at 110 °C, the dimethyl derivatives 2a and 2′a dimerize selectively through a double cycloaddition. This reaction leads to the formation of two new C–C bonds that involve the both meta positions of the two 4- R -1,4-dihydropyridinate fragments, resulting the binuclear aluminium species [Me 2 Al(4-R- i PrHBIP)] 2 (R = Bn ( 3a ); allyl ( 3′a )). Experimental kinetics showed that the dimerization of 2′a obeys second order rate with negative activation entropy, which is consistent with a bimolecular rate-determining step. Controlled methanolysis of both 3a and 3′a release the metal-free dimeric bases, (4-Bn- i PrHBIPH) 2 and (4-allyl- i PrHBIPH) 2 , providing a convenient route to these potentially useful ditopic ligands. When the R′ groups are bulkier than Me ( 2b , 2′b and 2′c ), the dimerization is hindered or fully disabled, favoring the formation of paramagnetic NMR-silent species, which have been identified on the basis of a controlled methanolysis of the final organometallic products. Thus, when a toluene solution of [AlEt 2 (4-Bn- i PrBIPH)] ( 2b ) was heated at 110 °C, followed by the addition of methanol in excess, it yields a mixture of the dimer (4-Bn- i PrHBIPH) 2 and the aromatized base 4-Bn- i PrBIP, in ca . 1 : 2 ratio, indicating that the dimerization of 2b competes with its spontaneous dehydrogenation, yielding a paramagnetic complex containing a AlEt 2 unit and a non-innocent (4-Bn- i PrBIP) ˙− radical-anion ligand. Similar NMR monitoring experiments on the thermal behavior of [AlEt 2 (4-allyl- i PrBIPH)] ( 2′b ) and [Al i Bu 2 (4-allyl-iPrBIPH)] ( 2′c ) showed that these complexes do not dimerize, but afford exclusively NMR silent products. When such thermally treated samples were subjected to methanolysis, they resulted in mixtures of the alkylated 4-allyl- i PrBIP and non-alkylated i PrBIP ligand, suggesting that dehydrogenation and deallylation reactions take place competitively. 
    more » « less